Room Temperature Electroluminescence from Tensile-Strained Si0.13Ge0.87/Ge Multiple Quantum Wells on a Ge Virtual Substrate

نویسندگان

  • Guangyang Lin
  • Ningli Chen
  • Lu Zhang
  • Zhiwei Huang
  • Wei Huang
  • Jianyuan Wang
  • Jianfang Xu
  • Songyan Chen
  • Cheng Li
چکیده

Direct band electroluminescence (EL) from tensile-strained Si0.13Ge0.87/Ge multiple quantum wells (MQWs) on a Ge virtual substrate (VS) at room temperature is reported herein. Due to the competitive result of quantum confinement Stark effect and bandgap narrowing induced by tensile strain in Ge wells, electroluminescence from Γ1-HH1 transition in 12-nm Ge wells was observed at around 1550 nm. As injection current density increases, additional emission shoulders from Γ2-HH2 transition in Ge wells and Ge VS appeared at around 1300-1400 nm and 1600-1700 nm, respectively. The peak energy of EL shifted to the lower energy side superquadratically with an increase of injection current density as a result of the Joule heating effect. During the elevation of environmental temperature, EL intensity increased due to a reduction of energy between L and Γ valleys of Ge. Empirical fitting of the relationship between the integrated intensity of EL (L) and injection current density (J) with L~Jm shows that the m factor increased with injection current density, suggesting higher light emitting efficiency of the diode at larger injection current densities, which can be attributed to larger carrier occupations in the Γ valley and the heavy hole (HH) valance band at higher temperatures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes.

We report what we believe to be the first demonstration of direct bandgap electroluminescence (EL) from Ge/Si heterojunction light-emitting diodes (LEDs) at room temperature. In-plane biaxial tensile strain is used to engineer the band structure of Ge to enhance the direct gap luminescence efficiency by increasing the injected electron population in the direct Gamma valley. Room-temperature EL ...

متن کامل

Room temperature 1.6 microm electroluminescence from Ge light emitting diode on Si substrate.

We report the room temperature electroluminescence (EL) at 1.6 microm of a Ge n+/p light emitting diode on a Si substrate. Unlike normal electrically pumped devices, this device shows a super linear luminescence enhancement at high current. By comparing different n type doping concentrations, we observe that a higher concentration is required to achieve better efficiency of the device. Thermal ...

متن کامل

MOSFET Channel Engineering using Strained Si, SiGe, and Ge Channels

Biaxial tensile strained Si grown on SiGe virtual substrates will be incorporated into future generations of CMOS technology due to the lack of performance increase with scaling. Compressively strained Ge-rich alloys with high hole mobilities can also be grown on relaxed SiGe. We review progress in strained Si and dual channel heterostructures, and also introduce high hole mobility digital allo...

متن کامل

A new route toward light emission from Ge: tensile-strained quantum dots.

The tensile-strained Ge quantum dot (QD) is proposed as a new route for the realization of direct band gap conversion in Ge. Ge QDs were successfully grown on an InP substrate by molecular beam epitaxy. The strain field in the QDs were analyzed by high resolution transmission electron microscopy and simulated by the finite element method based on the measured geometries. The strain field in the...

متن کامل

Quantum-confined Stark effect at 1.3 μm in Ge/SiGe quantum-well structures

We demonstrate a room-temperature strong quantum confinement Stark effect (QCSE) in Ge/SiGe multiple quantum wells (MQW) heterostructures, embedded in PIN diode. The device is designed to operate at 1.3μm, and QCSE is shown by photocurrent measurement in a surface illuminated device.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2016